Nowhere-Zero Flows in Random Graphs

نویسنده

  • Benny Sudakov
چکیده

A nowhere-zero 3-flow in a graph G is an assignment of a direction and a value of 1 or 2 to each edge of G such that, for each vertex v in G, the sum of the values of the edges with tail v equals the sum of the values of the edges with head v. Motivated by results about the region coloring of planar graphs, Tutte conjectured in 1966 that every 4-edge-connected graph has a nowhere-zero 3-flow. This remains open. In this paper we study nowhere-zero flows in random graphs and prove that almost surely as soon as the random graph G(n, p) has minimum degree two it has a nowhere-zero 3-flow. This result is clearly best possible. 2001 Academic Press

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On flows in bidirected graphs

Bouchet conjectured that every bidirected graph which admits a nowhere-zero bidirected flow will admit a nowhere-zero bidirected 6-flow [A. Bouchet, Nowhere-zero integer flows on a bidirected graph, J. Combin. Theory Ser. B 34 (1983) 279–292]. He proved that this conjecture is true with 6 replaced by 216. Zyka proved in his Ph.D dissertation that it is true with 6 replaced by 30. Khelladi prove...

متن کامل

Forbidden graphs and group connectivity

Many researchers have devoted themselves to the study of nowhere-zero flows and group connectivity. Recently, Thomassen confirmed the weak 3-flow conjecture, which was further improved by Lovász, Thomassen, Wu and Zhang who proved that every 6-edge-connected graph is Z3-connected. However, Conjectures 1 and 2 are still open. Conjecture 2 implies Conjecture 1 by a result of Kochol that reduces C...

متن کامل

Nowhere-Zero 3-Flows in Squares of Graphs

It was conjectured by Tutte that every 4-edge-connected graph admits a nowherezero 3-flow. In this paper, we give a complete characterization of graphs whose squares admit nowhere-zero 3-flows and thus confirm Tutte’s 3-flow conjecture for the family of squares of graphs.

متن کامل

Nowhere-zero 3-flows in abelian Cayley graphs

We characterize Cayley graphs of abelian groupswhich admit a nowhere-zero 3-flow. In particular, we prove that every k-valent Cayley graph of an abelian group, where k 4, admits a nowhere-zero

متن کامل

Cubic Graphs without a Petersen Minor Have Nowhere–zero 5–flows

We show that every bridgeless cubic graph without a Petersen minor has a nowhere-zero 5-flow. This approximates the known 4-flow conjecture of Tutte. A graph has a nowhere-zero k-flow if its edges can be oriented and assigned nonzero elements of the group Zk so that the sum of the incoming values equals the sum of the outcoming ones for every vertex of the graph. An equivalent definition we get...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comb. Theory, Ser. B

دوره 81  شماره 

صفحات  -

تاریخ انتشار 2001